Package: bark 1.0.6
bark: Bayesian Additive Regression Kernels
Bayesian Additive Regression Kernels (BARK) provides an implementation for non-parametric function estimation using Levy Random Field priors for functions that may be represented as a sum of additive multivariate kernels. Kernels are located at every data point as in Support Vector Machines, however, coefficients may be heavily shrunk to zero under the Cauchy process prior, or even, set to zero. The number of active features is controlled by priors on precision parameters within the kernels, permitting feature selection. For more details see Ouyang, Z (2008) "Bayesian Additive Regression Kernels", Duke University. PhD dissertation, Chapter 3 and Wolpert, R. L, Clyde, M.A, and Tu, C. (2011) "Stochastic Expansions with Continuous Dictionaries Levy Adaptive Regression Kernels, Annals of Statistics Vol (39) pages 1916-1962 <doi:10.1214/11-AOS889>.
Authors:
bark_1.0.6.tar.gz
bark_1.0.6.zip(r-4.5)bark_1.0.6.zip(r-4.4)bark_1.0.6.zip(r-4.3)
bark_1.0.6.tgz(r-4.4-x86_64)bark_1.0.6.tgz(r-4.4-arm64)bark_1.0.6.tgz(r-4.3-x86_64)bark_1.0.6.tgz(r-4.3-arm64)
bark_1.0.6.tar.gz(r-4.5-noble)bark_1.0.6.tar.gz(r-4.4-noble)
bark_1.0.6.tgz(r-4.4-emscripten)bark_1.0.6.tgz(r-4.3-emscripten)
bark.pdf |bark.html✨
bark/json (API)
NEWS
# Install 'bark' in R: |
install.packages('bark', repos = c('https://merliseclyde.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/merliseclyde/bark/issues
- banknotes - Swiss Bank Notes
bayesianclassificationlevy-processesnonparametric-regressionpredictionregression
Last updated 2 months agofrom:3da96e751b. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win-x86_64 | NOTE | Nov 05 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 05 2024 |
R-4.4-win-x86_64 | NOTE | Nov 05 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 05 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 05 2024 |
R-4.3-win-x86_64 | NOTE | Nov 05 2024 |
R-4.3-mac-x86_64 | NOTE | Nov 05 2024 |
R-4.3-mac-aarch64 | NOTE | Nov 05 2024 |
Exports:barkbark_matsim_circlesim_Friedman1sim_Friedman2sim_Friedman3sim.Circlesim.Friedman1sim.Friedman2sim.Friedman3
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
bark: Bayesian Additive Regression Trees | bark-package |
Swiss Bank Notes | banknotes |
Nonparametric Regression using Bayesian Additive Regression Kernels | bark |
Simulate Data from Hyper-Sphere for Classification Problems | sim_circle |
Simulated Regression Problem Friedman 1 | sim_Friedman1 |
Simulated Regression Problem Friedman 2 | sim_Friedman2 |
Simulated Regression Problem Friedman 3 | sim_Friedman3 |